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In a series of papers, an approach to field theory is developed in which matter appears
by interpreting source-free (homogeneous) fields over a 6-dimensional space of signa-
ture (3,3), as interacting (inhomogeneous) fields in space-time. The extra dimensions
are given a physical meaning as “coordinatized matter.” The inhomogeneous energy-
momentum relations for the interacting fields in space-time are automatically generated
by the simple homogeneous relations in 6-d. We then develop a Weyl geometry over
S0O(3,3) as base, under which gravity and electromagnetism are essentially unified via
an irreducible 6-calibration invariant Lagrange density and corresponding variational
principle. The Einstein—-Maxwell equations are shown to represent a low-order approx-
imation, and the cosmological constant must vanish in order that this limit exist.

KEY WORDS:

1. OVERVIEW

The old goal of understanding the long-range forces on a common basis
remains a compelling one. The classical attacks on this problem fell into four
classes:

1. Projective theories (Kaluza, Pauli, Klein)

2. Theories with asymmetric metric (Einstein—Mayer)
3. Theories with asymmetric connection (Eddington)
4. Alternative geometries (Weyl)

All these attempts failed. In one way or another, each is reducible and thus any
unification achieved is purely formal. The Kaluza theory requires an adhoc hypoth-
esis about the metric in 5-d, and the unification is nondynamical. As Pauli showed,
any generally covariant theory may be cast in Kaluza's form. The Einstein—Mayer
theory is based on an asymmetric metric, and as with the theories based on asym-
metric connection, is essentially algebraically reducible without additional, purely
formal hypotheses.
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Weyl's theory, however, is based upon the simplest generalization of
Riemannian geometry, in which both length and direction are nontransferable.
It fails in its original form due to the nonexistence of a simple, irreducible calibra-
tion invariant Lagrange density in 4-d. One might say that the thealygriamically
reducible. Moreover, the possible scalar densities lead to 4th order equations for
the metric, which, even supposing physical solutions could be found, would be
differentially reducible. Nevertheless the basic geometrical conception is sound,
and given a suitable Lagrangian and variational principle, leads almost uniquely
to an essential unification of gravitation and electrodynamics with the required
source fields and conservation laws.

What characteristics would a proper unification of gravity and electromag-
netism, that is, the metric and vector potential fields, possess, in order that they
both appear as essential parts of a larger whole, while preserving their unique
character as physical fields?

e |t must lead to an essential coupling in terms of the differential equations
that theA andg field obey.

e |t must reduce to ordinary gravity alone whéris a gradient, and so the
physical electromagnetic field vanishes.

e |t must reduce to ordinary electrodynamics in the extreme weak field
limit—thatis, the inhomogeneous Maxwell theory on essentially flat space.

e The equations must be no higher than second-order ig-fiedd.

e The equations must be no higher than second-order in the physical elec-
tromagnetic field derived from tha-field, thus third-order irA.

e The conservation of charge and energy-momentum should be jointly deriv-
able from a variational principle by Noether’s theorem.

In what follows, a theory satisfying all these requirements is developed.

2. VACUUM ELECTRODYNAMICS IN SIX DIMENSIONS

Notation. Roman letters go 1-6, other than i, j, k which go 1-3. Greek letters
are generic, or go 1-4 in the context of space-time. The spatial entries in the metric
carry negative signature. We often refext®andx6 asu andv, respectively.

We start by briefly considering the analog of the homogeneous Maxwell
equations on SO(3,3). The field equations are

F™M =0, 9pFmn~+ mFnp+ 9nFpm =0 1)
L
FM=| s 0 —p )

T* n 0
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where for clarity we have written out the field strength tensor in terms of 4-d
covariants. We see that there is the usual Maxwell field tensor, a 4-vector and a
4-pseudovector, and a pseudoscalar (see below), if we consider onlyptopse
transformations of SO(3,3) that leave the 1-4 and 5-6 subspaces invariant. In terms
of these components the field equations are

FUv= 9,8 + oy TH = J*
9,9 = —dyn 3)
3, T" = dyn
which are analogous to the “first set” in Maxwell's equations, and
0o Fuv + 0 Fog + 00Fy = 0
dFu = 8,S — 3,S.
ovFu =0, T, —0,T,
0un =T, — 3,5 =K,

which are analogous to the “second set.” The first set has 6 equations, the second
has 20. We have introduced the convenient shorthdreisdK for the indicated
combinations of derivatives of tt@andT components of the field.

Because we restrict ourselves to fireper transformations of SO(3,3), we
see that d-reversal must be accompanied by either-geversal or a/-reversal,
but not both in order to have a proper transformation of the entire 6-d space.
This implies that, from the perspective of the Lorentz group,if a scalar, then
v is a pseudoscalar. We adopt this convention now, without loss of generality.
ThusJ becomes the sum of two space-time vect&rshe sum of two space-time
pseudovectors, and finallyis a pseudoscalar itself—and this latter is independent
of the handedness convention we employ.

We see that the equations above have the form afti@mogeneoudlaxwell
equations, with additional equations for the figlthat establish a geometrical re-
lation between the component vect&andT as they appear in the current. Note
that neitherS nor T is conserved in the 4-d sense, but the 4-vedtonade from
the sumof derivatives ofSand T with respect tas andv, respectively is indeed
conserved in the 4-d sense. Thus we have a surprising alternate representation of
the inhomogeneous Maxwell theory by interpreting 6-d covariants from the per-
spective of space-time. The “dual curreit’is a pseudovector and has vanishing
4-curl, which gives nearly unambiguous information as to its interpretation—the
Pauli—Lubanski spin vector. The extra fields allow something unexpected on the
classical level, the introduction of spin. We go further and interpret the summands
in the 4-current as representationsnafitter and antimatter This makes sense,
in that we may represent a parity operation in 4-d as a continuous operation in

(4)
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the proper 6-d group—thus a half-rotation of the “time-space” aboutthgis
reverses both andv. Further, we know from experience that neither matter nor
antimatteraloneis conserved, rather, only tlsemof the two regarded gsroper
4-vectors pointing forward in time. Thus the thorny issue of interpretation of neg-
ative energy that arises in the Dirac theory, is alleviated from the very beginning in
this formalism. Matter and antimatter are fully and equally representediaslly
independent entitieshat are related by field equations.

The equations at first sight are highly overdetermined—we have 26 equations
for 15 field variables. However, just as in the 4-d case, this is not so, and we may
interpret some of the equations as initial conditions on the fields. Thus, we select
one of the time-like variables, say= x5, and ask how many equations in both sets
do not involve derivatives with respect to it. In the first set the answer is obviously
1, while in the second set, no index may be 5 because of total antisymmetry, giving
C(6-1,3)= 10 equations. This gives 11 equations in total that do not involve
u—by manipulating the remaining 15 equations, we may express these 11 in the
form of initial-u conditions. This leaves finally 15 equations for 15 unknowns, so
the system is well-determined. (This analysis actually applies in any number of
dimensions.)

Because of total antisymmetry, the second set implies that the field strength
tensor may be derived from a potential:

Fin = 0mAn — 0nAm (5)
in terms of which the various components are expressed
B=VxA E=-V,—-3A
S=-Vx—0,A o0=0x —oup
T=-Vy—0A 7=0y%—0dep
n=0duy —dx

In falt space with Cartesian coordinates, the components of the potential all
satisfy the ultrahyperbolic wave equation

(2 +d2+ 32— V))A=0 )

(6)

In terms of this potential, the currents have the expressions
I = — (83 4 7) A" + 3" (dux + )
= (88 = VA A" = 9"(V - A+ 1) (8)
K = 0"(0uy — dvx)
where we assumed the 6-covariant condition on the potentials
ImA™ =0 9)
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Notice that these expressions are just those of ordinary electrodynamics,
before imposition of the 4-covariant Lorentz gauge. In the present formalism,
the 4-covariant Lorentz gauge corresponds to a special gauge that is 4- but not
6-covariant:

A =0 dux+ay=0 (10)

It may be verified that the following tensor is symmetric and conserved (but
not as in 4-d traceless):

1
TmN FmaFan + ngnFabFab an-l—mn -0 (11)

This is the 6-d statement of energy-momentum conservation. We split this
6-d statement into 4 2 form as follows:

1
THY — F/thaU + F,uSFSV + F;LGFGV + ZngabFab
; 1
= ﬁaxwell -8 -THT" + ng(sny + TaTa + 772) (12)

T = FFF2 4+ FIOFg

= —Frg, —nT# (13)
THe — phe Fae + F“5F56
= —F*"T, —nS (14)
T = %(—nz +B?—E*— $'S,+ T"T,)
O — %(—172 + B~ E?— §'S, + T'T,) (15)
TS _ _giT, (16)
trace(T) = B2 — E2+ % + §'S, + T"T, = %Fm”an (17)

After some manipulation using the field equations, we arrive at
aV-I-l\l/llfl\)xwell = F/m(aqu + avTa) = F" ‘]Dt (18)

which are the energy relations in space-time foirdromogeneouseld. Thus, a
solution to the 6-d vacuum equations is seen from the perspective of space-time
as both the Maxwell field equations with sources, as well as the action of the field
on that source—in other words, the complete Maxwell-Lorentz dynamical sys-
tem. One can, say, take a 6-plane wave solution and interpret from space-time—the
current will be a continuous “charge wave” filling all space, moving with speed
less than e—this is a consequence of the time-like choice of the extra dimensions.
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This charge wave is self-sustaining and nondispersive by virtue of the dynami-
cal relations. By a superposition of charge waves, one may build up any charge
distribution with Fourier analysis and get the required dynamics automatically.
This may have practical value as a new method for solving problems in applied
electrodynamics.

There are two more energy relations to consider, and one might at first guess
that they produce energy relations involving the dual curkentbut in fact they
are simply identities and contribute nothing to space-time dynamics. So the role
of the dual current seems somewhat mysterious. Although out of the main line of
development here, a few words are in order about its role—more detail is provided
in companion papers where we consider the Dirac theory extended to SO(3,3).

First, note that when the pseudoscalar field is constant, the dual current
vanishes and the currents of matiiS* and antimatterd, T# are separately
conserved—there is no creation or annihilation possible and the distinction be-
tween the two is purely conventional. This dependence can be reversed—assume

9,(0,8") = —ddn=0 (19)
Thusn is independent afl andv. But this implies
9, K"=(32+3%)n=0 (20)

Now the 4-vectolK* has both vanishing curl and divergence, and so by the
extension of Helmholtz’ theorem to space-time, is constant and in fact may be
assumed to be zero. But this in turn implies thé independent of andt as well
asu andv. Thus the changes im from place to place measure the local rate of
creation/annihilation. The dual current thus establishes a constraint on the relation
of matter to antimatter. In order to deal with the charge current in total, we require
both J andK.

With this reformulation of electrodynamics, let us proceed to the main topic,
the creation of a Weyl field theory in 6-d with the purpose of unifyingdgleend A
fields under the principle of “pure infinitiesimal geometry.”

3. RESUME OF THE WEYL GEOMETRY

Shortly after the creation of general relativity, Hermann Weyl showed that a
simple generalization of Riemannian geometry, in which both length and direction
are nontransferable, required the introduction of a vector field and differential
identities, which gave jointly the conservation of the energy tensor and the charge
current as a consequence of the geometry.

The basic physical assumption is that the light cone has physical primacy for
phenomena—one gives up the idea that the space-time interval itself is invariant
unless that interval is zero. This amounts to the idea that the local standard of
measurement, the “calibration,” is itself subject to the action of physical fields.
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Riemannian geometry, of course, preserves lengths because the covriant derivative
of the metric tensor is zero. Thus, to accommodate the idea of a local calibration,
we must find a geometry that reduces to Riemannian geometry when the calibration
field may be globally determined.

The simplest mathematical assumption is that the change of calibration in
an infinitesimal region is proportional to the locally determined length, the same
proportion holding regardless of the length. We assume that the space is symm-
metrically connected. Then we have the expression for the change of the length of
a vector under an infinitesimal displacement

S(V*V,) = —8A(X™)(VV,.) (21)
SVH = —Thdx* VP
o (22)
Faﬂ = Fﬂot

Assuming a change in calibration is linear and homogeneous in the
displament,

Sh = A,Sx!
20, V#8VY + 80, VH*VY = —(TapdX* + Do 8X* — 80,5)VIVFE (23)
= —ASX gV VP

BecauseV is arbitrary, we get a relation between the calibration fisland
the metric:

(Fﬂaﬂ =+ Fﬂw)Sx"‘ = 89,4/3 + Aagﬂ,gﬁx“ (24)
and so
Lpap + Tpap = 0aQup + Aaguﬂ (25)
Solving for the connection yields
1
Fgﬁ = Egﬂv(aaguﬁ + 8ﬁg/wt - augaﬁ + Aaguﬁ + Aﬂg/wt - ugaﬁ) (26)
It follows that the covariant derivative of the metric is not zero, rather
Ouvie = _g;ont glw;a = glonz (27)
Let us write a calibration change as
1
O = A 9 — Xg’” (28)

with the additional hypothesis

A, — Aa—aulog)\zAa—%aux (29)
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The connection is invariant under this joint change. We arrive at a generalized
tensor analysis in which objects have covariance under both coordinate and cali-
bration changes considered as logically independent operations. Candidate tensors
will get a factor ofA on change of calibration:

Teb - AT (30)

The factorW is called thewveightof the object. Absolute invariants are those
havingW = 0. The covariant metric tensor has weight, the contravariant1.

The field strength tensor formed from the curl Afis absolutely invariant. A
covariant of weight4-1 is often simply referred to as tensor densityproper.
Observables are typically tensor densities.

One may now form the curvature tensor from the connection in the usual
way, by commutation of covariant derivatives, which now becomes an expression
in bothg and A and their derivatives. We adopt the convention

Rﬁaﬁ = aargﬁ — 0, + 0, Thp — FEUan (31)

The curvature tensor is calibration invariant and has the following symmetry
properties common to all symmetric connections:

0 o
R/wtﬁ + Ruﬂa =0

1 1 o _
Ruaﬁ + Raﬂu + Rﬂ/wt =0 (32)
o 14 14 _
R/wtﬂ:y + Ruﬂy;a + Ruya:ﬂ =0

The covariant curvature tensor is however not antisymmetric in the first in-
dices, nor is it symmetric under exchange of its first and last index pair. In fact

Raﬂp.v + Rﬁauv = gaﬂ(a//. A, — 9, AM) = Oup Fp.v (33)

Weyl suggestively refers to this a resolution into “direction curvature” and
“length curvature.”

The contracted curvature tensor is also not symmetric—a simple calculation
shows

" 1
Rw =R, Rw—Ry= _EN Fu (34)
whereN is the dimension of the base space. The contracted tensor, like the full

tensor, is absolutely invariant. Note that even the symmetric part of the contracted
tensor involves the\ field—a further contraction yields

1 N—-1)(N-2

1 (N-DN=-2)
i 4

where this starred scalar is that part®finvolving no A terms. The curvature

scalar is weight-1. Here the bare square root sign is shorthand for “square root
of the determinant off,” a very handy notation invented by Dirac.

R= R =R + (N~ 1)=a,(VA") + (35)



Gravitation and Electrodynamics Over SO(3,3) 169

The absent symmetries of the curvature tensor require careful treatment of the
contracted Bianchi identities. We start with the full identities and pull the metric
underneath the covariant differentiation, remembering that the covariant derivative
of the metric is not zero:

Rg;;;y + Rg;;a + Movt;ﬂ =0, ngﬁ + 9y Rgﬁy + g;'}'; Rove
= AR + AsRIL + ARY) (36)
Putg = u;
Ry = Row T R = A/R, = AR+ AR, 37)
and nowy = v and use the symmetry properties of the Ricci tensor in this space:
2R, — R, +F,, =2A,R, — A,R+ AF, (38)
and now raise index by again pulling the metric under the covariant derivative:
2R — (9" R), + F)* = 4A,R™ — 2A, "R+ 2A,F™ (39)
and so finally we arrive at
Vi 1 Vi 1 Vi
(Vo — 2A0) R“—Eg“R+§F°‘ =0 (40)
An equivalent form is
1 1
v (Rvat - égvaR+ éFV(X) =0 (41)

The explanation of theéA term on the left of the first form is found in the
concept ofconformal covariant derivativef a tensor of weighNN;

Do Tiny = (Vo + NA) T (42)

We now have a formalism we can apply to a joint field theory for the
andg. To proceed to physics, we must make assumptions about the the possible
Lagrange functions that might appear in a variational principle. We assume the
integrand will be an absolute invariant—the field equations are then guaranteed
to be calibration as well as coordinate invariant. Now, the dimension of the base
space comes into play, because to make an invariant integrand, we must take an
absolute scalar and append a factor of sqrt¢jeto make an invariant volume
element in the integration. In space-time, the determinant involves 4 factors of
covariant metric components, and on taking the square root, we see that the weight
of the prefactor is 2. Thus, the possible scalars must be of weighiThe only
simple scalars of weight 2 in space-time are

RZ, R®V le’ R;wozﬁ Ru.vozﬁy =y Fu.v (43)
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We see now that we are in trouble in 4-d. The first three will lead to 4th order
differential equations in the metric. Even if these may be differentially reduced
to match up with gravitation as we know it, we cannot be satisfied with such a
process, and in all likelihood there is a large excess of unphysical solutions at hand.
The last expression does not lead to equations for the metric at all. Weyl himself
tried the expression

R? 4+ kF"'F,, (44)

Now however, we have an even more serious objection—the arbitrary multi-
plicative factor wrecks the unification at the start. After a promising beginning, the
theory fails for the simplest of reasons—space-time is simply the wrong dimen-
sion. In hindsight, we would have been in trouble in any case, because nowhere
does the electric current appear—thus it would never be possible for this theory to
reduce to ordinary electrodynamics in the absence of gravity. The best that could
be achieved would be a world with no charges and free light waves, having nothing
to shine on.

Shortly after it was published, Einstein showed that Weyl's theory made
predictions that were at odds with experience. Namely, it would not be possible
for sharp spectral lines to exist, because a naive application of the idea to a moving
electron shows that its mass is dependent on its space-time history. This physical
failure corresponds exactly to the mathematical failure of the missing variational
integrand.

Only first in six dimensions can we form simple rational invariants that lead
to a sensible variational principle. The volume factor now has weight 3, so the
possible scalars are weighB, and we have the possibilities

Ranan, RmnamenFab, RmnameaFnb (45)

In contrast to the situation in 4-d, all of these will lead to second order
equations for thg, and all are irreducible—no arbitrary factors will appear in the
variational principle. We pick the first one. The others are unsuitable for reasons
outlined in the Appendix. The unique variational principle is then

/wa% _ /RWdQ —0, W=F"F,, (46)

We may immediately note the following points:

e Whatever the field equations are, they will be essentially unifiedd &amd
g because the integrand is irreducible.

¢ One might imagine a situation in which the electromagnetic scalar is more
or less constant in a small area of space-time—uvariation will then reduce
to the usual Hilbert action.

e Likewise, in a small region in whiclR is roughly constant, we are left



Gravitation and Electrodynamics Over SO(3,3) 171

with the Lorentz action of electrodynamics, which, as we have seen, will
generate the full inhomogeneous Maxwell-Lorentz theory in space-time.

4. THE CALIBRATION INVARIANT FIELD EQUATIONS

The field equations foA are easily obtained by cookbook procedure, using
the formula above for the Ricci scalar, so the expanded Lagrange density is

L = (R* +59™"9mAn + 5A0(9™"m l0g / + am@™" + g™"Ap))
9" 0m Am dta Aot/ (47)
The Euler—Lagrange equations with respectare
5W(@M"0m l0gy/ + dm@™" + 29™"An) — 9,(BW./g"" + 4R/F™) =0  (48)

or
o/ RE™) = 2 /g™ (Y~ 2A)W = > /C™ (49)

We see here the appearance qfuaely geometricatharge current on the
right that is a proper absolute invariant. The equations have the proper form of
Maxwell's equations in curved space-time, but the appearande wfider the
differentiation on the left shows immediately that thand A fields are essentially
coupled. Despite their simple form, these equations are in fact rather complex
because of the implicit dependenceRbn A.

It is remarkable that without ever introducing electrons, we have recovered
the essential elements of electrodynamics, justifying Einstein’s famous statement:
“Das Elektron ist ein Fremder in die Elektrodynamik!"—the electron is a stranger
in electrodynamics!

The conservation of “geometric charge” has an interesting expressioninterms
of the conformal covariant derivative. We have

5
700(/C") = dmin(VRF™) = 0 (50)
which may be invariantly written as
DnD™W =0 (51)

This amounts to a “conformal wave equation” for W. Note that the equation
is exact—this is not a flat space approximation. In terms of the ordinary covariant
derivative it is

(Vm - 3Am)gmn(vn - 2An)W =0

(52)
9™ (Vin — 2Am) (Vi — 2A0)W = 0
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To get the gravitational equations, we employ the Palatini procedure, which
holds as well in Weyl space as it does in Riemann space, because it is not based
on the particular form of the connection, rather the simple observation that the
difference of two connections is a tensor. We write

SRmn = (8ﬂ5rr?1a - Iﬂ?nn‘srgb) - (838F2m - F%b(San - anSFgm + Faab‘srr?m)

= (8Tn).n = (0Tn) (53)
We do the variation in several steps. First write
8(RW,/) = W8(R/) + R§(W/) — RW8,/ (54)
We have

3(RY) = Rs8(9"°V) + 9" V6 Rss

= Rs8(0"* V) + 9 V/(0T7a) s — 9=V (6TTY).

= Rsd(g°V) + V(9017 — V(9°5TT)
~ V(gE5TE) + V(@56TR)

= Ris8(@°V) + V(97°0T72) s — V(90T
—V(9°ASTT,) /(97 AadTY)

= Ris8(9"°V) + 5(V/g'°0TR) — da(v/9*0TYY)
+2/9°ASTE — 2./9"° ASTE, (55)

Above, we used the following conversion of a covariant divergence of a vector

to an ordinary divergence in a 6-d Weyl space:

1
VA = 8,V* +TH VY =9,V + <—

S+ 3A,L> VH

VL = 8, (JVH) + 3RV )

Proceeding, we have, using the above definition of the geometric current,
the following removal of a divergence by Stoke’s theorem and parts integration
(indicated by the wavy equality sign):

WS(Ry/) = WRs3(9"° /) + Wos(y/97°8T ) — Woa(/956T)
+ J/g'S8T2 2WA, — /' SSTE2WA,
~ WRs8(9% V) + V98T, Cs — /98I Ca
= (WRs—I7Cs + F?sCa)é(g’Sd) +8(V9°I%)Cs — (8V9°T)Ca
(57)
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We must now express the variation of the connection in terms of the variation
of theg field. We use the following identities:

O (Jgab) ( ast o gbsl—wgr + gabrgr o 29abA.—)\/
(Vg™ = (—g°Ts - 2A%) Y (58)

8 = ngn5(\/gmn)

Returning to the development, we have, noting #a not varied and again
removing a divergence:

5(«/gr51“raa)Cs = 5(grsar\/ + 3\/grSAr)Cs
= 8(9°9 v/)Cs + 3A8(/9"°)Cs
= (8r/)89°Cs + 9"°Csd; (64/) + 3A Cs8(:/9"°)

= (8rv/)89"°Cs + 9"°Csd; <%gmn5(«/Gmn)> + 3A Cs8(+/9"°)

~ (hCo — 8 (9°C) 3 amrd (/™) + 3 C5(/5")
(59)
We need to re-express the term in the direct variatiog: of
V3G = 3(/6) = 6 30nd(/a™) = (5405 - 36°3n ) 3™
1

7 ((ﬂnaﬁ — %grsgmn> 8(v/9™ (60)

and so, using the previously derived electromagnetic field equations,

1
8(V/9"°I%)Cs = ((am log ./)Cn (8{“82 - ng”grs>

ngs —

1
— 8m(g’““Cn)Zgrs + 3A Cs) 8(v/9"°)

1 1
= ((ar log \/)Cs — Zgrsyam(«/cm) +3A Cs> 8(v9"°)

= ((r 109 /)Cs + 3A,Cs)8(/9") (61)
Likewise we have after removal of a divergence:
3(V9'°I1%)Ca = 8(0s(v/9) + 2/ A
= C18095(/0"°) + 2AsCr8(V/9")
~ (—03sCr + 2AsCr)8(/9®) (62)
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so at length we arrive at

W§(Ry) = (WRs — I'§,Cs + T'i,Ca + (3r 109 /)Cs — 3sC;
+3A,Cs + 2AsC;)5(,/9"°)
= (WRs + ((o log/) + 3A, —T%)Cs — Crs + 2AsC/)8(/0"°)
= (WRs — Crs + 2AsCr)8(1/9") (63)

Next, we have

= R(29™"FmrFrsd(v/9%) — 2W4.))

1
—-2R (Frn Fe + ZW(:}S) 3(v/9"°) = —2RTs8(V/9"°)

(64)

whereT is the usual electromagnetic energy-momentum tensor. Collecting every-
thing we now have

8(RW/) = (WRs — 2RTis — Cr;s + 2AsCr)8(1/0") (65)

Recall the Ricci tensor is not symmetric—thus, in this expression, we may
add a symmetrizing term inside that is antisymmetric without altering the variation.
We find

Cs + dsW
Cr;s —2ACr + WhRs = Cr;s -2 (¥) G

w
Cs] + 85]W
2W

1 Cq + oW
= 5%~ (S)

+ W (

1
E(V" —2A)Cq)

1
_E(v{r - 2A{r)(vs} - 2As})\N (66)

and so finally

S(RW\/) = <WR_S —2RTs + %(V{r - 2A{r) (VS{ — 2AS})W)5(\/grs) (67)
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expressing the variation of the integrand in terms of the arbitrary variation of the
metric. The underbars on the indices of the Ricci tensor indicate the symmetric
part. Thus the combined electromagnetic and gravitational equations are

2R 1
Ron = (W) Tmn — <m) (DmDn + DnDm)W

1 5 (68)
—on(VRF™ = -D™W
—on(/RE™) = 2
whereD is the conformal covariant derivative introduced above. Becaukas
conformal weight-1, the equations are calibration invariant by inspection.

Under what conditions do these equations take on the form of Einstein’s
equations? We write

1 2R 1 W
Rinn — Egmn(R —A) = (W) <Tmn - ngnﬁ(R —A)
1 (69)
- (ﬁ) (DmDn + Dy Dm)W>
The last two terms on the right must cancel:
(Dm Dn + Dn Dm - gmn(R - A))W =0 (70)

Contracting with the metric and remembering the conformal wave equation
for W we find

(R— AW =0 (71)

Thus, we obtain general relativity only in the limit
R
A=0,R—>0,W—>0,W—>—47TG (72)

It thus appears that the indeterminate aspect of the Einstein equations rep-
resented by the arbitrary cosmological constant, is an artifact of the decoupling
of gravity and electromagnetism. R andW differ from zero by a factor of first
order, their product is second order and may be ignored. Thus from the current
perspective, the Einstein—Maxwell equations are to be regarded as a first-order
approximation to the full calibration-invariant system.

One striking feature of these equations that distinguishes them from Einstein’s
equations is the absent gravitational constant—in fact the ratio of scalars in front
of the energy tensor plays that role. This explains the odd rol& of general
relativity and its scaling behavior (see Weinberg, 1972). The ratio has conformal
weightl and soG has a natural dimensionfulness that prevents it from being a
proper coupling constant—so this theory explains why ordinary general relativity,
even in the linear approximation and the quantum theory built on it, cannot be
regularized.
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In other papers we take up this issue of finding simple solutions to these
equations, as well as the possibility of extending the idea of conformal covariance to
spinor fields. We also go into specific detail regarding solutions to the reformulation
of electrodynamics presented above and its interpretation.
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APPENDIX
The Possible Scalars for a Varitional Principle

The following scalars

R™" R Fap, R™MFmaFnp (73)
are rejected for algebraic reasions. Recalling
Rmnab+ Ramap = GmnFab (74)

which is the signature of the non-Riemannian character of Weyl space, we see that
the first scalar projects away this symmetric part, while in the second case

RmnameaFnb = RabmnFmaFnb (75)

again projecting out the non-Riemannina asymmetry of the curvature tensor. There-
fore the particular choice for the integrand in the variational principle is essentially
unigue. Moreover this form leads to the following simple comparison with the usual
formalism.

We assumdR andW differ but little from some constant values,

€ €
wheree is assumed small compared to the first-order values. Then to first order
RW,/ = RoWo/ + €(Ry + Wh)/ 77)

and so the variation with fixed boundary is
8/RW d2 = §,/RoWo d2 + 8. /e(Ry + W;) d2
= RoWp 32 + 8./€(Ry + Wh) A2 (78)
= 0+ 8./€(Ry + Wp) dQ2

so we recover the usual combined Maxwell and Hilbert actions.
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